0=(3x^4+128x^2+256)

Simple and best practice solution for 0=(3x^4+128x^2+256) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(3x^4+128x^2+256) equation:


Simplifying
0 = (3x4 + 128x2 + 256)

Reorder the terms:
0 = (256 + 128x2 + 3x4)

Remove parenthesis around (256 + 128x2 + 3x4)
0 = 256 + 128x2 + 3x4

Solving
0 = 256 + 128x2 + 3x4

Solving for variable 'x'.

Combine like terms: 0 + -256 = -256
-256 + -128x2 + -3x4 = 256 + 128x2 + 3x4 + -256 + -128x2 + -3x4

Reorder the terms:
-256 + -128x2 + -3x4 = 256 + -256 + 128x2 + -128x2 + 3x4 + -3x4

Combine like terms: 256 + -256 = 0
-256 + -128x2 + -3x4 = 0 + 128x2 + -128x2 + 3x4 + -3x4
-256 + -128x2 + -3x4 = 128x2 + -128x2 + 3x4 + -3x4

Combine like terms: 128x2 + -128x2 = 0
-256 + -128x2 + -3x4 = 0 + 3x4 + -3x4
-256 + -128x2 + -3x4 = 3x4 + -3x4

Combine like terms: 3x4 + -3x4 = 0
-256 + -128x2 + -3x4 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(256 + 128x2 + 3x4) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(256 + 128x2 + 3x4)' equal to zero and attempt to solve: Simplifying 256 + 128x2 + 3x4 = 0 Solving 256 + 128x2 + 3x4 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 85.33333333 + 42.66666667x2 + x4 = 0 Move the constant term to the right: Add '-85.33333333' to each side of the equation. 85.33333333 + 42.66666667x2 + -85.33333333 + x4 = 0 + -85.33333333 Reorder the terms: 85.33333333 + -85.33333333 + 42.66666667x2 + x4 = 0 + -85.33333333 Combine like terms: 85.33333333 + -85.33333333 = 0.00000000 0.00000000 + 42.66666667x2 + x4 = 0 + -85.33333333 42.66666667x2 + x4 = 0 + -85.33333333 Combine like terms: 0 + -85.33333333 = -85.33333333 42.66666667x2 + x4 = -85.33333333 The x term is 42.66666667x2. Take half its coefficient (21.33333334). Square it (455.1111114) and add it to both sides. Add '455.1111114' to each side of the equation. 42.66666667x2 + 455.1111114 + x4 = -85.33333333 + 455.1111114 Reorder the terms: 455.1111114 + 42.66666667x2 + x4 = -85.33333333 + 455.1111114 Combine like terms: -85.33333333 + 455.1111114 = 369.77777807 455.1111114 + 42.66666667x2 + x4 = 369.77777807 Factor a perfect square on the left side: (x2 + 21.33333334)(x2 + 21.33333334) = 369.77777807 Calculate the square root of the right side: 19.22960681 Break this problem into two subproblems by setting (x2 + 21.33333334) equal to 19.22960681 and -19.22960681.

Subproblem 1

x2 + 21.33333334 = 19.22960681 Simplifying x2 + 21.33333334 = 19.22960681 Reorder the terms: 21.33333334 + x2 = 19.22960681 Solving 21.33333334 + x2 = 19.22960681 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.33333334' to each side of the equation. 21.33333334 + -21.33333334 + x2 = 19.22960681 + -21.33333334 Combine like terms: 21.33333334 + -21.33333334 = 0.00000000 0.00000000 + x2 = 19.22960681 + -21.33333334 x2 = 19.22960681 + -21.33333334 Combine like terms: 19.22960681 + -21.33333334 = -2.10372653 x2 = -2.10372653 Simplifying x2 = -2.10372653 Reorder the terms: 2.10372653 + x2 = -2.10372653 + 2.10372653 Combine like terms: -2.10372653 + 2.10372653 = 0.00000000 2.10372653 + x2 = 0.00000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined.

Subproblem 2

x2 + 21.33333334 = -19.22960681 Simplifying x2 + 21.33333334 = -19.22960681 Reorder the terms: 21.33333334 + x2 = -19.22960681 Solving 21.33333334 + x2 = -19.22960681 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.33333334' to each side of the equation. 21.33333334 + -21.33333334 + x2 = -19.22960681 + -21.33333334 Combine like terms: 21.33333334 + -21.33333334 = 0.00000000 0.00000000 + x2 = -19.22960681 + -21.33333334 x2 = -19.22960681 + -21.33333334 Combine like terms: -19.22960681 + -21.33333334 = -40.56294015 x2 = -40.56294015 Simplifying x2 = -40.56294015 Reorder the terms: 40.56294015 + x2 = -40.56294015 + 40.56294015 Combine like terms: -40.56294015 + 40.56294015 = 0.00000000 40.56294015 + x2 = 0.00000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 9/10x=-9/5 | | 5w-11=4w | | x=-15x^2+60x+40 | | x=-15x+60x+40 | | 10-5x=21 | | 4x^2-28x+12=0 | | 48x=3 | | 2x+2=5-5x | | 9x+2=4-(3x-3) | | 8p+7-3p=43 | | 7=15 | | Log(2y-1)=(5y+4) | | 2+5=15 | | 16+8x=30 | | 8p+7-3=-43 | | 6x^2+4xy+5y^2+17y-6=0 | | 2-x/3=4 | | 7k/8-3/4-5k=3/8 | | 2x-32=18x | | -4(3t-9)=-8(-8-t) | | 2b+4b=500 | | -4(3t-9)=-8(8-t) | | 7(7g+4)2=161 | | 15*2p=1.25p+8 | | 3p-2=22 | | 5x+11=22 | | 10d+6=2d+46 | | 2X+2Y=340 | | -(n+6)-9(n-8)+18=-96 | | 8n+3n=270 | | 8(x-5)=32 | | 15m+5n-6m+9n= |

Equations solver categories